If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2=80
We move all terms to the left:
15x^2-(80)=0
a = 15; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·15·(-80)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*15}=\frac{0-40\sqrt{3}}{30} =-\frac{40\sqrt{3}}{30} =-\frac{4\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*15}=\frac{0+40\sqrt{3}}{30} =\frac{40\sqrt{3}}{30} =\frac{4\sqrt{3}}{3} $
| 8b+40b=2 | | -8(7-3p)+3=91 | | y+397=603 | | 4x-6-x+3=0 | | 10+4m=10+5m | | x+x+10+x+x+5=180 | | 28=4.1+a | | -11j+16-22j-27+5j=0 | | y+297=523 | | 32=8p+3 | | y+197=423 | | -x^2-21x+56=8+x | | c+54=75 | | 5v+2=1/2(10v+4) | | 7x+12=4x–17 | | 2l+2(40)=850 | | -x^2-22x+46=0 | | b+45=80 | | 8(x+5)=8(x+7)-2x | | 5x+3(x-4)=4(x+5) | | a+38=74 | | 7x-15-6x+16=5 | | 3(4x-3)-(39+60x)=0 | | 3x-4+x-1=134 | | 1/5x+4=2x+3/5 | | 9-7-5y=5-15y+77 | | 7y-6=12y+19 | | 4x-1=-6x+29 | | 1.2x=5.28 | | x+(1/7)=(9/14) | | 4y-25=2y+41 | | -8-12+7p-11=0 |